
Biography
Biography: Igor Y Denisyuk
Abstract
Silver, gold, selenium and metal oxides nanoparticles in polymer matrix intensively investigated in biomedical application due to the plenty of unique properties of antimicrobial properties to Gram-positive, Gram-negative pathogens and antifungal activity is an important scientific problem to create bio-nanocomposites. Non-selective, broad spectrum antibacterial and antifungal activity against different types of microorganisms as well as the long-term effect for a few months is one of the main requirements to biopolymers. Nanocomposites with nanoparticles Ag, Au, SiO2, ZnO were prepared on the basis of two monomer compositions: (1) Acidic composition consisting of monomers: 2-Carboxyethyl and Bisphenol A glycerolate. (2) pH neutral formulation consisting of monomers: Diurethanedimethacrylate and Isodecyl acrylate and photo initiator. Methods of preparing polymer films based nanocomposites can be found in our papers. Exposure was increased 5 times from total time of polymerization for these composites; prepared samples were heated at 50 oC for 12 hours to minimize the effects of residual monomers in the experiment. As test objects were used: Strains of fungi Candida albicans (С. albicans NCTC 885-653) and Aspergillus fumigatus (clinical isolate); strains of staphylococci Community-associated Methicillin-resistant Staphylococcus aureus (CA-MRSA, penicillin-binding protein (PBP2α) - positive); Healthcare-associated Methicillin-resistant Staphylococcus aureus (HA-MRSA, penicillin-binding protein (PBP2α) - positive); Methicillin-resistant Staphylococcus epidermidis (MRSE, penicillin-binding protein (PBP2α) - positive); Methicillin-resistant Staphylococcus epidermidis (MRSE, penicillin-binding protein (PBP2α) - negative); Methicillin-resistant Staphylococcus aureus (MRSA, penicillin-binding protein (PBP2α) -negative); Methicillin-susceptible Staphylococcus aureus (MSSA); Methicillin-susceptible Staphylococcus epidermidis (MSSE). The antifungal activity of ZnO nanocomposites based on polymeric matrix 2-Carboxyethyl acrylate/Bisphenol-A-glycerolate (1 glycerol/phenol) diacrylate against C. albicans and A. fumigatus was found. Pronounced suppressive effect of ZnO nanocomposites based on polymeric matrix 2-Carboxyethyl acrylate/Bisphenol-A-glycerolate (1 glycerol/phenol) diacrylate against staphylococci was identified. The antifungal activity of polymeric matrix based on 2-Carboxyethyl acrylate/Bisphenol-A-glycerolate (1 glycerol/phenol) diacrylate against C. albicans was found.