Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Diana E Aznakayeva

Diana E Aznakayeva

University of Manchester, UK

Title: Graphene-based electro-optical modulators operating at telecommunication wavelength range

Biography

Biography: Diana E Aznakayeva

Abstract

Compact and fast optical modulators with low operating voltage and low power consumption are in great demand by the telecommunication industry. The task of creating such modulators can be addressed using the unique optical and electronic properties of graphene. A staunch progress have been recently made in designing hybrid graphene-based modulators working at telecommunication wavelength range where graphene is combined with various optical heterostructures, waveguides, interferometers and graphene gating is used as a method of electro-optical control. High frequency operation and reasonable large modulation depth have been demonstrated. However, devices which combine all important ingredients (compactness, speed, low operating voltage and low power consumption) are still lacking. Here the aim of our investigation is simple graphene-based telecommunication electro-optical modulators fabrication which guarantee extremely small modulation volume (<3), work at low gating voltages (~1V), have low power consumption (<1 µW) and show modulation depth (~4 %) using a single layer of graphene. We discuss various technological aspects necessary to achieve these parameters including the problems of graphene transfer, gating along with the choice of the optimal parameters for the optical heterostructures and provide the results of electrical and optical characterization of the devices. The novelty of our approach lies in careful choice of high quality graphene monolayer and implementation of a high-k-gate dielectric which give the possibility to apply small gate biases and obtain significant electro optical modulation effect. We believe that our devices (being easily integrable into any optical scheme) could find wide range of applications in the telecommunication industry.